Approximate Kalman filtering by both M-robustified dynamic stochastic approximation and statistical linearization methods

Author:

Pavlović Miloš,Banjac ZoranORCID,Kovačević Branko

Abstract

AbstractThe problem of designing a robustified Kalman filtering technique, insensitive to spiky observations, or outliers, contaminating the Gaussian observations has been presented in the paper. Firstly, a class of M-robustified dynamic stochastic approximation algorithms is derived by minimizing at each stage a specific time-varying M-robust performance index, that is, general for a family of algorithms to be considered. The gain matrix of a particular algorithm is calculated at each stage by minimizing an additional criterion of the approximate minimum variance type, with the aid of the statistical linearization method. By combining the proposed M-robust estimator with the one-stage optimal prediction, in the minimum mean-square error sense, a new statistically linearized M-robustified Kalman filtering technique has been derived. Two simple practical versions of the proposed M-robustified state estimator are derived by approximating the mean-square optimal statistical linearization coefficient with the fixed and the time-varying factors. The feasibility of the approaches has been analysed by the simulations, using a manoeuvring target radar tracking example, and the real data, related to an object video tracking using short-wave infrared camera.

Funder

Vlatacom Institute of High Technologies, Belgrade, Serbia

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference46 articles.

1. A. Gelb (ed.), Applied optimal estimation, Analytic Sciences Corporation (MIT Press, Cambridge, MA, 2010)

2. M.S. Grewal, A.P. Andrews, Kalman filtering theory and practice using Matlab (Wiley, Hoboken, NJ, 2015)

3. R. Stengel, Stochastic optimal control (Wiley, New York, 1986)

4. F. van der Heijden, B. Lei, G. Xu, F. Ming, Y. Zou, D. de Ridder, D.M. Tax, Classification, parameter estimation, and state estimation: an engineering approach using Matlab (Wiley, Hoboken, NJ, 2017)

5. Kovačević B., & Đurović Ž., Fundamentals of stochastic signals, systems and estimation theory with worked examples (Springer, Berlin, 2011)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3