Perspective Chapter: Approximate Kalman Filter Using M-Robust Estimate Dynamic Stochastic Approximation with Parallel Adaptation of Unknown Noise Statistics by Huber’s M-Robust Parameter Estimator

Author:

Kovačević Branko,Banjac Zoran,Unkašević Tomislav

Abstract

The problem of designing a feasible adaptive M-robustified Kalman filter in a case of a thick-tailed Gaussian environment, characterized by impulsive noise-inducing observation and innovation outliers, and/or errors in mathematical model-inducing structural outliers, has been considered. Firstly, the time-varying criterion is used to generate a family of dynamic stochastic approximation algorithms. The M-robust estimate stochastic approximation is derived by minimizing the minimum variance criterion, the estimates of the latter being combined with the one-step minimum mean square error prediction to design M-robust estimate Kalman filter. Finally, the latter is combined with the Huber moving window M-robust parameter estimator of the unknown noises statistics, in parallel with the M-robust state estimation to design an adaptive M-robust estimate Kalman filter. Simulated maneuvering target tracking scenario revealed that the proposed adaptive M-robust estimate-based Kalman filter improves significantly the target estimation and tracking quality, being effective in suppressing multiple outliers with contamination degrees less than thirty percent. Moreover, the achieved improvement comes with additional computational efforts. However, these efforts are usually not significant enough to prevent real-time application.

Publisher

IntechOpen

Reference40 articles.

1. Gelb A, Kasper J, Nash R, Price C, Sutherland A, editors. Applied Optimal Estimation, Analytic Sciences Corporation. Cambridge, MA: MIT Press; 1974. ISBN 9780262570480

2. Grewal MS, Andrews AP. Kalman Filtering: Theory and Practice Using Matlab. Hoboken, NJ: Wiley; 2015

3. Heijden F, van der Lei B, Xu G, Ming F, Zou Y, de Ridder D, et al. Classification, Parameter Estimation, and State Estimation: An Engineering Approach Using Matlab. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2017

4. Kovačević B, Đurović Ž. Fundamentals of Stochastic Signals, Systems and Estimation Theory with Worked Examples. Berlin: Springer; 2011

5. Verhaegen M, Verdult V. Filtering and System Identification: A Least Squares Approach. Cambridge: Cambridge University Press; 2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3