Tightly Coupled Visual–Inertial Fusion for Attitude Estimation of Spacecraft

Author:

Yi Jinhui123ORCID,Ma Yuebo12,Long Hongfeng12ORCID,Zhu Zijian12ORCID,Zhao Rujin123

Affiliation:

1. Institute of Optics and Electronics of Chinese Academy of Sciences, Chengdu 610209, China

2. Key Laboratory of Science and Technology on Space Optoelectronic Precision Measurement, Chinese Academy of Sciences, Chengdu 610209, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The star sensor boasts the highest accuracy in spacecraft attitude measurement. However, it is vulnerable to disturbances, including high-dynamic motion, stray light, and various in-orbit environmental factors. These disruptions may lead to a significant decline in attitude accuracy or even abnormal output, potentially inducing a state of disorientation in the spacecraft. Thus, it is usually coupled with a high-frequency gyroscope to compensate for this limitation. Nevertheless, the accuracy of long-term attitude estimation using a gyroscope decreases due to the presence of bias. We propose an optimization-based tightly coupled scheme to enhance attitude estimation accuracy under dynamic conditions as well as to bolster the star sensor’s robustness in cases like lost-in-space. Our approach commenced with visual–inertial measurement preprocessing and estimator initialization. Subsequently, the enhancement of attitude and bias estimation precision was achieved by minimizing visual and inertial constraints. Additionally, a keyframe-based sliding window approach was employed to mitigate potential failures in visual sensor measurements. Numerical tests were performed to validate that, under identical dynamic conditions, the proposed method achieves a 50% improvement in the accuracy of yaw, pitch, and roll angles in comparison to the star sensor only.

Funder

Outstanding Youth Science and Technology Talents Program of Sichuan

West Light of Chinese Academy of Sciences

Sichuan Province Science and Technology Support Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3