A Fast Star Identification Algorithm of Star Sensors in the LIS Mode

Author:

Lu Kaili,Liu Enhai,Zhao Rujin,Tian Hong,Zhang Hui

Abstract

In the South Atlantic Anomaly (SAA) area, due to the influence of transient noise caused by space radiation, a star sensor can easily stay in the lost-in-space (LIS) mode for a long time. To solve this problem, this paper proposes a fast star identification (FSI) algorithm. First, a noise suppression method based on scale assessment and neighborhood comparison is developed. Next, a fast and accurate search technique of multiple main stars based on the k-vector technique is used to realize star identification. The search technique builds a self-defined attribute database of stars, and a fast search method of a repeated star identity is proposed to realize the positioning of the main star. Lastly, the final main stars are obtained through the comparison of field of view and verification of angular distance. The experimental results showed that when the star sensor works at a speed of 0.1°/s and the level of transient noise signals is lower than 900, the successful identification rate is higher than 70%. In addition, compared with the triangle algorithm, match group algorithm, and multi-pole algorithm (MPA), the proposed FSI algorithm has the advantages of a higher successful identification rate and a faster execution speed.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3