A High-Accuracy Star Centroid Extraction Method Based on Kalman Filter for Multi-Exposure Imaging Star Sensors

Author:

Yu Wenbo1,Qu Hui1,Zhang Yong2

Affiliation:

1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Peng Cheng Laboratory, Department of Mathematics and Theory, Shenzhen 518055, China

Abstract

A multi-exposure imaging approach proposed in earlier studies is used to increase star sensors’ attitude update rate by N times. Unfortunately, serious noises are also introduced in the star image due to multiple exposures. Therefore, a star centroid extraction method based on Kalman Filter is proposed in this paper. Firstly, star point prediction windows are generated based on centroids’ kinematic model. Secondly, the classic centroid method is used to calculate the coarse centroids of the star points within the prediction windows. Lastly, the coarse centroids are, respectively, processed by each Kalman Filter to filter image noises, and thus fine centroids are obtained. Simulations are conducted to verify the Kalman-Filter-based estimation model. Under noises with zero mean and ±0.4, ±1.0, and ±2.5 pixel maximum deviations, the coordinate errors after filtering are reduced to about 37.5%, 26.3%, and 20.7% of the original ones, respectively. In addition, experiments are conducted to verify the star point prediction windows. Among 100 star images, the average proportion of the number of effective star point objects obtained by the star point prediction windows in the total object number of each star image is calculated as only 0.95%. Both the simulated and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3