Abstract
AbstractIn challenging circumstances, the estimation performance of integrated navigation parameters for tightly coupled GNSS/SINS is impacted by outlier measurements. An effective solution that employs a novel iterative sigma-point structure with a modified robustness optimization approach for enhancing the error compensation effectiveness and robustness of filters utilized in GNSS challenge conditions is proposed in this paper. The proposed method modifies the CKF scheme by incorporating nonlinear regression and numerous iteration processes for ameliorating error compensation. Subsequently, a loss function and penalty mechanism are implemented to enhance the filter's robustness to outlier measurements. Furthermore, to fully incorporate valid information of the innovation and speed up the operation of the proposed method, the outlier measurement detection criteria are established to bypass the penalty mechanism against measurement weights in the absence of outliers in GNSS measurements. Field experiments demonstrate that the proposed method outperforms traditional methods in mitigating navigation errors, particularly when multipath errors and non-line-of-sight (NLOS) reception are increased.
Funder
National Natural Science Foundation of China
The Postgraduate Research & Practice Innovation Program of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献