Abstract
AbstractWhile role-playing games and personalized learning have been regarded as effective tools to improve students’ learning, incorporating personalized learning into role-playing games is challenging and approaches are limited to cognitive and motivational variables. Aiming at expanding approaches to incorporate personalization into role-playing games, this study included affective and cognitive variables to develop a personalized role-playing game, guiding by the situational design model. A pilot study was conducted to examine the effectiveness of the game on students’ learning performance and cognitive load. Results showed that personalized role-playing game environment was effective in improving students’ performance, reducing extraneous load, and promoting germane load. This study also found that although decreased extraneous load, could leave students more GL capacity for efficient learning, this would not necessarily lead to performance improvement. Students need to be motivated to invest sufficient germane load to actively process the learning materials and thus, improve performance. The findings have several implications for future research designing personalized educational games aimed to promote efficient learning.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Education
Reference50 articles.
1. Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. International Journal of Artificial Intelligence in Education, 24(4), 387–426. https://doi.org/10.1007/s40593-014-0023-y
2. Chang, C. C., Liang, C., Chou, P. N., & Lin, G. Y. (2017). Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Computers in Human Behavior, 71, 218–227. https://doi.org/10.1016/j.chb.2017.01.031
3. Chang, C. C., Warden, C. A., Liang, C., & Lin, G. Y. (2018). Effects of digital game-based learning on achievement, flow and overall cognitive load. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.2961
4. Chen, B., Hwang, G. H., & Wang, S. H. (2021). Gender differences in cognitive load when applying game-based learning with intelligent robots. Educational Technology & Society, 24(3), 102–115.
5. Clark, D. B., Virk, S. S., Barnes, J., & Adams, D. M. (2016). Self-explanation and digital games: Adaptively increasing abstraction. Computers & Education, 103, 28–43. https://doi.org/10.1016/j.compedu.2016.09.010
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献