Author:
Chiang Yen Chih,Lin Chien Chung,Kuo Hao Chung
Abstract
Abstract
In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference31 articles.
1. Schubert EF, Kim JK. Solid-state light sources getting smart. Science. 2005;308:1274–8.
2. Koike M, Shibata N, Kato H, Takahashi Y. Development of high efficiency GaN-based multi-quantum-well LEDs and their applications. IEEE J Sel Topics Quantum Electron. 2002;8:271–7.
3. Khan A, Balakrishnan K, Katona K. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics. 2008;2:77–84.
4. Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol. 2011;26:014036-1–6.
5. Tu PM, Chang CY, Huang SC, Chiu CH, Chang JR, Chang WT, et al. Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier. Appl Phys Lett. 2011;98:211107-1–3.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献