Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

Author:

Fujii Tatsuya,Fang Xu,Inoue Hiroyuki,Murakami Katsuji,Sawayama Shigeki

Abstract

Abstract Background Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. Results We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and β-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield) and rice straw (43% yield). Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co.) demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor), the glucose yield (over 65%) from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%). In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. Conclusion We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We found that glucan-hydrolyzing activity of the culture supernatant from A. cellulolyticus was superior to that from T. reesei, while the xylan-hydrolyzing activity was superior for the cellulase from T. reesei. Moreover, Acremonium cellulase exhibited a greater glucan and mannan-hydrolyzing activity than Accellerase 1000.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3