Use of zinc oxide nanoparticles in the growing rabbit diets to mitigate hot environmental conditions for sustainable production and improved meat quality

Author:

Abdel-Wareth Ahmed A. A.,Amer Shimaa A.,Mobashar Muhammad,El-Sayed Hazem G. M.

Abstract

Abstract Background This study evaluated the modulatory effects of zinc oxide nanoparticles (ZnO-NPs) supplementations on the productive performance, blood biochemistry, carcass criteria, and meat quality of White New Zealand rabbits reared under hot conditions. A total of 125 White New Zealand male rabbits (body weight, “650 ± 11”, 30 days old) were assigned to five treatment diets: basal diets supplemented with ZnO-NPs at 0, 20, 40, 60, or 80 mg/kg for 60 days. Each treatment was replicated 25 times with one rabbit each. Results The body weight (BW), BW gain, and feed intake linearly increased with zinc oxide nanoparticle supplements. Supplementation of ZnO-NPs at 20, 40, 60, and 80 mg/kg significantly improved (linear, P < 0.05) the feed conversion ratio compared to the control group. Moreover, supplementation of ZnO-NPs at these inclusions 20, 40, 60, and 80 mg/kg significantly (P < 0.05) decreased the serum cholesterol, alanine aminotransferase, and aspartate aminotransferase, creatinine, and urea compared to control group. The lipid oxidation was lower, and the water holding capacity of rabbit meat was improved (P < 0.001) in rabbits fed on 20, 40, 60, and 80 mg/kg ZnO-NPs supplemented diets compared to control. Conclusion The results suggested that dietary supplementation of ZnO-NPs (20–80 mg/kg) can mitigate the negative impacts of heat stress on rabbit performance and health. Its supplementation improved growth performance and meat physicochemical properties, and blood biochemistry parameters of White New Zealand rabbits.

Funder

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3