The effect of steam sterilization on different 3D printable materials for surgical use in veterinary medicine

Author:

Dautzenberg PhilippORCID,Volk Holger A.,Huels Nikolaus,Cieciora Lena,Dohmen Katharina,Lüpke Matthias,Seifert Herman,Harms Oliver

Abstract

Abstract Background Different 3D-printed materials polyactic acid (PLA), polyamide (PA), polycarbonates (PC), acrylonitrile butadiene styrene (ABS) and GreenTEC Pro®I have been considered for surgical templates, but there is a sparity of data about how these materials are affected by steam sterilization. The aim of the current study was to test if and how these materials change morphologically when high temperature, pressure and humidity are applied during the steam sterilization process. The overall aim is to create patient-specific sawing templates for performing corrective osteotomies. After the designing process, test-specimens with five different materials: PLA, PC, ABS, PA and GreenTEC Pro® were 3D-printed in two filling grades (30 and 100%). The FDM method was used for printing. After 3D-printing, the test-specimens were steam sterilized with a standard program lasting 20 min, at a temperature of 121 °C and a pressure of 2–3 bar. In order to measure the deviation of the printed model, we measured the individual test-specimens before and after steam sterilization using a sliding gauge. Results PC, PA and ABS showed great morphological deviations from the template after 3D-printing and steam sterilization (> 1%) respectively. ABS proved unsuitable for steam sterilization. PLA and GreenTEC Pro® demonstrated fewer morphological deviations both before and after sterilization. Therefore, we decided to perform a second test just with PLA and Green-TEC Pro® to find out which material has the highest stability and is probably able to be used for clinical application. The smallest deviations were found with the GreenTEC Pro® solid body. After autoclaving, the specimens showed a deviation from the planned body and remained below the 1% limit. Conclusion Steam sterilization causes morphological deviations in 3D printed objects. GreenTEC Pro® seems to be a suitable material for clinical use, not only for intraoperative use, but also for precise modeling. Microbiological examination, as well as biomechanical tests, should be performed to further assess whether intraoperative use is possible.

Funder

Stiftung Tierärztliche Hochschule Hannover

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3