Computer-Assisted Surgery Using 3D Printed Saw Guides for Acute Correction of Antebrachial Angular Limb Deformities in Dogs

Author:

Worth Andrew1,Crosse Katherine1,Kersley Andrew2

Affiliation:

1. School of Veterinary Science, Massey University, Palmerston North, New Zealand

2. Axia Design Group Ltd, Napier, New Zealand

Abstract

Objective The aim of this study was to report the use of custom saw guides produced using computed tomographic imaging (CT), computer simulation and three-dimensional (3D) printing to aid surgical correction of antebrachial deformities in six dogs. Materials and Methods Antebrachial limb deformities in four small, and two large, breed dogs (seven limbs) were surgically corrected by a radial closing wedge ostectomy and ulnar osteotomy. The location and orientation of the wedge ostectomy were determined using CT data, computer-assisted planning and production of a saw guide in plastic using a 3D printer. At surgery, the guide was clamped to the surface of the radius and used to direct the oscillating saw blade. The resultant ostectomy was closed and stabilized with a bone plate. Results Five limbs healed without complications. One limb was re-operated due to a poorly resolved rotational component of the deformity. One limb required additional stabilisation with external fixation due to screw loosening. The owners of five dogs completed a Canine Orthopedic Index survey at a follow-up period of 37 to 81 months. The median preoperative score was 3.5 and the median postoperative score was 1, representing an overall positive effect of surgery. Radiographically, 5/7 limbs were corrected in the frontal plane (2/7 were under-corrected). Similarly, 5/7 limbs were corrected in the sagittal plane, and 2/7 were over-corrected in the sagittal place. Conclusions Computer-aided design and rapid prototyping technologies can be used to create saw guides to simplify one-stage corrective osteotomies of the antebrachium using internal fixation in dogs. Despite the encouraging results, accurate correction of rotational deformity was problematic and this aspect requires further development.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3