Encapsulation of probiotics: past, present and future

Author:

Rajam R.,Subramanian ParthasarathiORCID

Abstract

Abstract Background Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market. Main body Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques. Short conclusions The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3