Effect of elastic inhomogeneity on the surface displacements in the northeastern Japan: Based on three-dimensional numerical modeling

Author:

Sato Kachishige,Minagawa Naoya,Hyodo Mamoru,Baba Toshitaka,Hori Takane,Kaneda Yoshiyuki

Abstract

Abstract In geodetic inversions such as estimation of coseismic slip and/or afterslip distribution on faults, the displacements on the surface calculated under an assumption of homogeneous elastic half space have been mostly used as the Green’s functions (GF’s). However, this seems not adequate for better estimations of such slip distribution, because the subsurface structures are more or less inhomogeneous, especially those in and around Japan where the structure must be much complicated. In this study, to examine how much the inhomogeneous subsurface structure affects on the surface displacements, we conduct some 3-D finite element calculations with a grid for the region of 1400 km (EW) × 1200 km (NS) × 200 km (depth) including the Tohoku and Hokkaido, northeastern Japan. Assuming homogeneous and inhomogeneous elastic models with various values for the Young’s modulus and Poisson’s ratio, we calculated the surface displacements due to a dip-slip type dislocation of 1 m on many cell-like subfaults assumed on the interface between the Pacific and land side plates. Comparing the results, we find a large discrepancy in the surface displacements between the homogeneous and inhomogeneous elastic models and less dependency of the surface displacements on the Poisson’s ratio. The discrepancy is found to be more than 20% and can be as large as ~40% in some cases. Such a large discrepancy indicates that the surface displacements calculated for inhomogeneous elastic medium with realistic subsurface structure, unlike as in usual cases, should be used as the GF’s for better geodetic inversions.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3