Coseismic Deformation Responses due to Geometrical Structure and Heterogeneity of the Accretionary Wedge: Study Case 2010 Mentawai Earthquake, West Sumatra, Indonesia

Author:

Kuncoro Alvina K.1ORCID,Srigutomo Wahyu1ORCID,Fauzi Umar1ORCID

Affiliation:

1. Physics of Earth and Complex Systems, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132 West Java, Indonesia

Abstract

The assumption of a homogeneous elastic half-space model is widely used to model the earth’s deformation. However, the homogeneous assumption would not accurately reflect the complexity of the shallow crust. We performed a 3D coseismic deformation model using the finite element method and referred to the 2010 Mentawai earthquake. The 2010 tsunami earthquake was located at the Mentawai segment, which is a part of the accretionary wedge in the Sumatra subduction zone. This active accretionary wedge is identified as the most complicated structure on earth and lies along the Sumatra subduction zone, at which most destructive earthquakes happen in this region. We examined the impact of the accretionary wedge geometry and material properties by considering the wedge as a single different property separated from the continental plate. Various geometrical features, such as topography and wedge dimension, as well as physical properties, were simulated. Those features are then observed for their responses on the surface deformation. The topography affected the magnitude of the horizontal deformation up to 10% but only the pattern of the vertical deformation. The wedge dimension seems to have an insignificant influence on the surface deformation compared to the topography. Different physical properties of the accretionary wedge affect not only the magnitude of the horizontal deformation up to 40% but also the orientation. The direction of the lateral movement is seemingly affected by the material under the GPS station and by the source. On the other hand, the variations in the physical properties resulted in discrepancies of 0.5 meters in the vertical deformation near the source. These results indicated that regional physical property information and geometrical features are critical in estimating coseismic deformation, leading to more accurate slip inversion and earthquake and tsunami hazard prediction, particularly in regions with significant inhomogeneity.

Funder

Research Innovation and Community Empowerment (PPMI)–Faculty of Mathematics and Natural Sciences ITB 2022, Indonesia

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3