Abstract
Abstract
Background
Circadian rhythms play a fundamental role in the progression of cardiovascular events. Almost all cardiovascular diseases have a circadian misalignment usually characterized by changes in metabolites. This study aimed to dynamically monitor rhythmic biomarkers, to elucidate the metabolic pathways that are potentially under circadian control in spontaneously hypertensive rats (SHRs), and to eventually establish a circadian metabolic phenotype strategy based on metabolomics.
Methods
In this study, an untargeted metabolomics technology was used to dynamically monitor changes in serum metabolites between SHR model group and WKY control group. Liquid chromatography-mass spectrometry (LC–MS) combined with multivariate statistical analysis was applied to identify markers of hypertension rhythm imbalance. The concentrations of amino acids and their metabolites identified as markers were quantified by a subsequent targeted metabolomics analysis. Overall, these approaches comprehensively explored the rhythm mechanism and established a circadian metabolic phenotype strategy.
Results
The metabolic profile revealed a disorder in the diurnal metabolism pattern in SHRs. Moreover, multivariate statistical analysis revealed metabolic markers of rhythm homeostasis, such as arginine, proline, phenylalanine, citric acid, l-malic acid, succinic acid, etc., accompanied by an imbalance in hypertension. The key metabolic pathways related to rhythm imbalance in hypertension were found by enrichment analysis, including amino acid metabolism, and the tricarboxylic acid cycle (TCA). In addition, the quantitative analysis of amino acids and their metabolites showed that the changes in leucine, isoleucine, valine, taurine, serine, and glycine were the most obvious.
Conclusions
In summary, this study illustrated the relationship between metabolites and the pathways across time on hypertension. These results may provide a theoretical basis for personalized treatment programmes and timing for hypertension.
Funder
National Natural Science Foundation of China
Shandong Province major scientific and technological innovation
Key Technology Research and Development Program of Shandong
Major Basic Research Projects of Shandong Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference63 articles.
1. O’Shea PM, Griffin TP, Fitzgibbon M. Hypertension: the role of biochemistry in the diagnosis and management. Clin Chim Acta. 2017;465:131–43.
2. Tian Y, Jiang F, Li Y, Jiang H, Chu Y, Zhu L, et al. Evaluation of the anti-hypertensive effect of Tengfu Jiangya tablet by combination of UPLC-Q-exactive-MS-based metabolomics and iTRAQ-based proteomics technology. Biomed Pharmacother. 2018;100:324–34.
3. Liu A, Chu YJ, Wang X, Yu R, Jiang H, Li Y, et al. Serum metabolomics study based on lc-ms and antihypertensive effect of uncaria on spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2018;2018:9281946.
4. Li Y, Li G, Gorling B, Luy B, Du J, Yan J. Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle. PLoS Comput Biol. 2015;11:e1004086.
5. Brown SA. Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol Metab. 2016;27:415–26.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献