Metabolomics reveals serum metabolic signatures in H‐type hypertension based on mass spectrometry multi‐platform

Author:

Gao Siqi1,Zhao Jinhui12,Liu Xiaowei1,Liu Liyan1ORCID,Chen Rui3

Affiliation:

1. Department of Nutrition and Food Hygiene, Public Health College Harbin Medical University Harbin China

2. CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China

3. Department of Orthopedics Jiangnan University Medical Center Wuxi China

Abstract

AbstractBackgroundH‐type hypertension (HHT) is a disease combined with hyperhomocysteinaemia and hypertension (HT). This study aims to find specific metabolic changes and reveal the pathophysiological mechanism of HHT, which provide the theoretical basis for the early prevention and treatment of HHT.MethodsSerum samples from three groups including 53 HHT patients, 36 HT patients and 46 healthy controls (HC) were collected. The targeted and untargeted metabolomics analyses were performed to determine the metabolic changes. Based on multivariate statistical analysis, the serum potential metabolites were screened and different metabolic pathways were explored.ResultsOur results demonstrated that there were 28 important potential metabolites for distinguishing HT from HHT patients. Metabolic pathway analysis showed that the different metabolic pathways between HHT and HC group were arginine biosynthesis, arginine and proline metabolism, and tyrosine metabolism. The changed metabolic pathway of HT and HC group included linoleic acid metabolism. The specific metabolic pathways of HT‐HHT comparison group had phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; glycine, serine and threonine metabolism.ConclusionsMetabolomics analysis by mass spectrometry multi‐platform revealed the differences of metabolic profiles between HHT and HT subjects. This work laid the groundwork for understanding the aetiology of HHT, and these findings may provide the useful information for explaining the HHT metabolic alterations and try to prevent HHT.

Publisher

Wiley

Subject

Clinical Biochemistry,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3