Abstract
Abstract
Background
Evidences support the view that central obesity is an independently cardiovascular risk. It is thought that leptin contributes to autonomic dysfunction and cardiovascular risks in type 1 and type 2 diabetes mellitus (T1DM and T2DM). This raises the possibility that leptin might mediate the relationship between central obesity and the severity of cardiovascular autonomic neuropathy (CAN) in patients with well-controlled T2DM and prediabetes.
Methods
The complete cardiovascular reflex tests and biomarkers were assessed for each patient. The severity of CAN was assessed using composite autonomic scoring scale (CASS). A single-level three-variable mediation model was used to investigate the possible relationships among central obesity [as indicated by waist circumference (WC)], leptin level, and severity of CAN (as indicated by CASS value).
Results
A total of 107 patients were included in this study: 90 with diabetes and 17 with prediabetes. The results demonstrate that increased WC is associated with increased severity of CAN (r = 0.242, P = 0.017). We further discovered that leptin level is positively correlated with WC (r = 0.504, P < 0.0001) and the CASS value (r = 0.36, P < 0.0001). Further mediation analysis shows that leptin level serves as mediators between higher WC and higher CASS.
Conclusions
Our results highlighted the relationship among leptin, central obesity, and severity of CAN. As the leptin level serves as mediator between central obesity and severity of CAN, a longitudinal study is needed to confirm that control of WC can decrease leptin levels and can be effective in reducing CAN progression.
Funder
Kaohsiung Chang Gung Memorial Hospital
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference55 articles.
1. Collaboration NCDRF. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.
2. Lieb DC, Parson HK, Mamikunian G, Vinik AI. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res. 2011;2012:878760.
3. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48(9):e12997.
4. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.
5. Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab. 2015;309(8):E691–E714.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献