Abstract
Abstract
Background
Non-invasive risk stratification contributes to the precise treatment of prostate cancer (PCa). In previous studies, lymphocyte subsets were used to differentiate between low-/intermediate-risk and high-risk PCa, with limited clinical value and poor interpretability. Based on functional subsets of peripheral lymphocyte with the largest sample size to date, this study aims to construct an easy-to-use and robust nomogram to guide the tripartite risk stratifications for PCa.
Methods
We retrospectively collected data from 2039 PCa and benign prostate disease (BPD) patients with 42 clinical characteristics on functional subsets of peripheral lymphocyte. After quality control and feature selection, clinical data with the optimal feature subset were utilized for the 10-fold cross-validation of five Machine Learning (ML) models for the task of predicting low-, intermediate- and high-risk stratification of PCa. Then, a novel clinic-ML nomogram was constructed using probabilistic predictions of the trained ML models via the combination of a multivariable Ordinal Logistic Regression analysis and the proposed feature mapping algorithm.
Results
197 PCa patients, including 56 BPD, were enrolled in the study. An optimal subset with nine clinical features was selected. Compared with the best ML model and the clinic nomogram, the clinic-ML nomogram achieved the superior performance with a sensitivity of 0.713 (95% CI 0.573–0.853), specificity of 0.869 (95% CI 0.764–0.974), F1 of 0.699 (95% CI 0.557–0.841), and AUC of 0.864 (95% CI 0.794–0.935). The calibration curve and Decision Curve Analysis (DCA) indicated the predictive capacity and net benefits of the clinic-ML nomogram were improved.
Conclusion
Combining the interpretability and simplicity of a nomogram with the efficacy and robustness of ML models, the proposed clinic-ML nomogram can serve as an insight tool for preoperative assessment of PCa risk stratifications, and could provide essential information for the individual diagnosis and treatment in PCa patients.
Funder
National Natural Science Foundation of China
Hubei Provincial Key Laboratory of Intelligent Robot
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献