Prediction of Prostate Cancer Risk Stratification Based on A Nonlinear Transformation Stacking Learning Strategy

Author:

Cao Xinyu,Fang YinORCID,Yang ChunguangORCID,Liu ZhenghaoORCID,Xu GuopingORCID,Jiang YanORCID,Wu PeiyanORCID,Song WenboORCID,Xing HanshuoORCID,Wu XinglongORCID

Abstract

Purpose: Prostate cancer (PCa) is an epithelial malignancy that originates in the prostate gland and is generally categorized into low, intermediate, and high-risk groups. The primary diagnostic indicator for PCa is the measurement of serum prostate-specific antigen (PSA) values. However, reliance on PSA levels can result in false positives, leading to unnecessary biopsies and an increased risk of invasive injuries. Therefore, it is imperative to develop an efficient and accurate method for PCa risk stratification. Many recent studies on PCa risk stratification based on clinical data have employed a binary classification, distinguishing between low to intermediate and high risk. In this paper, we propose a novel machine learning (ML) approach utilizing a stacking learning strategy for predicting the tripartite risk stratification of PCa.Methods: Clinical records, featuring attributes selected using the lasso method, were utilized with 5 ML classifiers. The outputs of these classifiers underwent transformation by various nonlinear transformers and were then concatenated with the lasso-selected features, resulting in a set of new features. A stacking learning strategy, integrating different ML classifiers, was developed based on these new features.Results: Our proposed approach demonstrated superior performance, achieving an accuracy of 0.83 and an area under the receiver operating characteristic curve value of 0.88 in a dataset comprising 197 PCa patients with 42 clinical characteristics.Conclusions: This study aimed to improve clinicians’ ability to rapidly assess PCa risk stratification while reducing the burden on patients. This was achieved by using artificial intelligence-related technologies as an auxiliary method for diagnosing PCa.

Funder

Wuhan Institute of Technology

Publisher

Korean Continence Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3