Accelerating CFD simulation with high order finite difference method on curvilinear coordinates for modern GPU clusters

Author:

Ye Chuang-Chao,Zhang Peng-Jun-Yi,Wan Zhen-Hua,Yan Rui,Sun De-Jun

Abstract

AbstractA high fidelity flow simulation for complex geometries for high Reynolds number (Re) flow is still very challenging, requiring a more powerful HPC system. However, the development of HPC with traditional CPU architecture suffers bottlenecks due to its high power consumption and technical difficulties. Heterogeneous architecture computation is raised to be a promising solution to the challenges of HPC development. GPU accelerating technology has been utilized in low order scheme CFD solvers on the structured grid and high order scheme solvers on unstructured meshes. The high-order finite difference methods on structured grids possess many advantages, e.g., high efficiency, robustness, and low storage. However, the strong dependence among points for a high-order finite difference scheme still limits its application on the GPU platform. In the present work, we propose a set of hardware-aware technology to optimize data transfer efficiency between CPU and GPU, as well as communication efficiency among GPUs. An in-house multi-block structured CFD solver with high order finite difference methods on curvilinear coordinates is ported onto the GPU platform and obtains satisfying performance with a speedup maximum of around 2000x over a single CPU core. This work provides an efficient solution to apply GPU computing in CFD simulation with specific high order finite difference methods on current GPU heterogeneous computers. The test shows that significant accelerating effects can be achieved for different GPUs.

Funder

National Numerical Windtunnel Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3