Spectral Properties of Mimetic Operators for Robust Fluid–Structure Interaction in the Design of Aircraft Wings

Author:

de Curtò J.1234ORCID,de Zarzà I.245ORCID

Affiliation:

1. Computer Applications in Science & Engineering, BARCELONA Supercomputing Center, 08034 Barcelona, Spain

2. Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany

3. Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, 28015 Madrid, Spain

4. Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain

5. Escuela Politécnica Superior, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain

Abstract

This paper presents a comprehensive study on the spectral properties of mimetic finite-difference operators and their application in the robust fluid–structure interaction (FSI) analysis of aircraft wings under uncertain operating conditions. By delving into the eigenvalue behavior of mimetic Laplacian operators and extending the analysis to stochastic settings, we develop a novel stochastic mimetic framework tailored for addressing uncertainties inherent in the fluid dynamics and structural mechanics of aircraft wings. The framework integrates random matrix theory with mimetic discretization methods, enabling the incorporation of uncertainties in fluid properties, structural parameters, and coupling conditions at the fluid–structure interface. Through spectral and localization analysis of the coupled stochastic mimetic operator, we assess the system’s stability, sensitivity to perturbations, and computational efficiency. Our results highlight the potential of the stochastic mimetic approach for enhancing reliability and robustness in the design of aircraft wings, paving the way for optimization algorithms that integrate uncertainties directly into the design process. Our findings reveal a significant impact of stochastic perturbations on the spectral radius and eigenfunction localization, indicating heightened system sensitivity. The introduction of randomized singular value decomposition (RSVD) within our framework not only enhances computational efficiency but also preserves accuracy in low-rank approximations, which is critical for handling large-scale systems. Moreover, Monte Carlo simulations validate the robustness of our stochastic mimetic framework, showcasing its efficacy in capturing the nuanced dynamics of FSI under uncertainty. This study contributes to the fields of numerical methods and aerospace engineering by offering a rigorous and scalable approach for conducting uncertainty-aware FSI analysis, which is crucial for the development of safer and more efficient aircraft.

Funder

EUROPEAN High-Performance Computing Joint Undertaking

BARCELONA Supercomputing Center: ‘TIFON’ and ‘NEXTBAT’

UFV R&D pre-competitive project ‘OpenMaas: Open Manufacturing as a Service’

Publisher

MDPI AG

Reference18 articles.

1. High-order mimetic finite-difference operators satisfying the extended Gauss divergence theorem;Corbino;J. Comput. Appl. Math.,2020

2. Shashkov, M. (1995). Conservative Finite-Difference Methods on General Grids, CRC Press.

3. Mimetic finite-difference Methods for Diffusion Equations;Hyman;Comput. Geosci.,2001

4. Modelling of rupture propagation using high-order mimetic finite-differences;Rojas;Geophys. J. Int.,2008

5. Mimetic finite-difference methods in image processing;Bazan;Comput. Appl. Math.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3