Abstract
AbstractA novel method for estimating the wood moisture content above the fiber saturation point (FSP) is proposed, and the method performance is confirmed. Previous studies have highlighted that there is a negative linear correlation between the specific dynamic Young’s modulus (log (E/ρ)) and tangent loss (log (tanδ)) of clear small wood specimens. We confirm that this correlation can be obtained for air-dried commercial lumber from Japanese cedar, or sugi (Cryptomeria japonica), via experimental analysis. The best-fit linear regression line of this correlation only changes by the apparent density above the FSP (i.e., only by the moisture content of the specimen) when E and tanδ are kept constant in this high moisture content range. Here, we derive an equation to calculate the moisture content using log (E/ρ) and log (tanδ) based on the regression line of sugi wood at the FSP. A 45-day drying test was conducted on 23 green lumber specimens, with the E/ρ and tanδ values calculated from the natural resonance frequency fr, the logarithmic decrement λ and dimensions at various drying stages. The estimated moisture contents are in good agreement with the measured values, confirming the performance of proposed moisture content method.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献