Evaluation of increase in loss tangent from longitudinal vibration of wood log by considering apparent density difference between sapwood and heartwood caused by moisture content

Author:

Fukui Toshiyuki,Yanase Yoshiyuki,Fujii Yoshihisa

Abstract

AbstractThis study confirmed that the loss tangent (or tangent loss, tan δ) obtained from the longitudinal vibration of a wood log increases with the apparent density difference between sapwood and heartwood, owing to moisture content difference. The reason for this was estimated to be the shear stress occurring when the longitudinal vibration is excited from the calculation of the longitudinal vibration equation for a cylindrical model with different sapwood and heartwood densities. According to the measurement of the vibrational properties of 35 sugi (Cryptomeria japonica) logs with large moisture content variation in the sapwood and heartwood, the tan δ for longitudinal vibration increased compared with that for flexural vibration when the apparent sapwood density exceeded apparent heartwood density, whereas the difference in the specific dynamic Young’s modulus (E/ρ) was small. To discover why tan δ increases, both the axial and shear strain energy were calculated from the numerical solution of the longitudinal vibration of a cylindrical model by only considering the apparent density difference between sapwood and heartwood. It was found that the shear strain energy increases with the apparent density difference. Because it is known from previous studies that tan δ from the shear strain (tan δS) is larger than that from the axial strain (tan δA), this study concluded that tan δ increases with the apparent density difference. The ratio of increase of tan δ calculated by the model adequately explaange of the measured tan δ caused by the longitudinal vibration of a sugi log.

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials,Forestry

Reference44 articles.

1. Oja J, Grundberg S, Grönlund A (2001) Predicting the stiffness of sawn products by X-ray scanning of Norway spruce saw logs. Scand J For Res 16:88–96

2. Ikeda K, Nagase W, Sugiyama A, Miyoshi Y, Suzuki Y (2021) Development of methods for estimating the moisture content of large-diameter sugi (Cryptomeria japonica) logs using gamma rays and high-frequency electromagnetic waves (in Japanese). Mokuzai Kogyo 76:444–449 

3. Suzuki Y, Ikeda K, Miyoshi Y, Fujimoto K, Sugiyama A (2018) Evaluation of moisture content of sugi logs using impedance measurement. 2018 12th ISEMA, Lublin, Poland, pp 1–3, https://doi.org/10.1109/ISEMA.2018.8442300

4. Wang X, Ross RJ, McClellan M, Barbour RJ, Erikson JR, Forsman JW, McGinnis GD (2001) Nondestructive evaluation of standing trees with a stress wave method. Wood Fiber Sci 33:522–533

5. Shiiba A, Aratake S, Morita H (2011) Mechanical performance of sugi (Cryptomeria japonica) lumber sawn parallel to the edge of large diameter logs I (in Japanese). Mokuzai Gakkaishi 57:234–241

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3