Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar

Author:

Takahashi Akihiro,Yamamoto Naoyuki,Ooka Yu,Toyohiro Toshinobu

Abstract

With the crisis awareness of global warming and natural disasters, utilization of local wood has drawn increasing attention in achieving the Sustainable Development Goals (SDGs). It is necessary to investigate the deformation and fracture of the structural tissue in wood in order to improve the safety and reliability of wood application. However, deformation and fracture mechanisms of the structural tissue in each annual ring are unknown. The mechanical characteristics of wood are reflected in the properties of earlywood and latewood. In the present study, microstructural observation and tensile tests were conducted to examine the relationship between the mechanical properties and fracture behavior of latewood in the growth direction in Japanese cedar. Brittle fracture behavior of the latewood specimen was confirmed based on the tensile stress–strain curve and features of the fracture surface. Moreover, two fracture modes, tensile fracture and shear fracture, were recognized. Weibull analysis of tensile strength in each fracture mode was performed to evaluate the reliability and utility of brittle latewood. Lastly, two fracture mechanisms were discussed based on the failure observation findings by a scanning electron microscope.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of Scanning Electron Microscopy in Solid Wood Experiments: Example of Oriental Plane (Platanus orientalis L.);Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3