Modulation of osteogenic differentiation by Escherichia coli-derived recombinant bone morphogenetic protein-2

Author:

Kim Nam-Hyun,Jung Seon-Kyong,Lee Juno,Chang Pahn-Shick,Kang Seung-Hoon

Abstract

AbstractRecombinant human bone morphogenetic protein-2 (rhBMP-2), a key regulator of osteogenesis, induces the differentiation of mesenchymal cells into cartilage or bone tissues. Early orthopedic and dental studies often used mammalian cell-derived rhBMP-2, especially Chinese hamster ovary (CHO) cells. However, CHO cell-derived rhBMP-2 (C-rhBMP-2) presents disadvantages such as high cost and low production yield. To overcome these problems,Escherichia coli-derived BMP-2 (E-rhBMP-2) was developed; however, the E-rhBMP-2-induced signaling pathways and gene expression profiles during osteogenesis remain unclear. Here, we investigated the E-rhBMP-2-induced osteogenic differentiation pattern in C2C12 cells and elucidated the difference in biological characteristics between E-rhBMP-2 and C-rhBMP-2 via surface plasmon resonance, western blotting, qRT-PCR, RNA-seq, and alkaline phosphatase assays. The binding affinities of E-rhBMP-2 and C-rhBMP-2 towards BMP receptors were similar, both being confirmed at the nanomolecular level. However, the phosphorylation of Smad1/5/9 at 3 h after treatment with E-rhBMP-2 was significantly lower than that on treatment with C-rhBMP-2. The expression profiles of osteogenic marker genes were similar in both the E-rhBMP-2 and C-rhBMP-2 groups, but the gene expression level in the E-rhBMP-2 group was lower than that in the C-rhBMP-2 group at each time point. Taken together, our results suggest that the osteogenic signaling pathways induced by E-rhBMP-2 and C-rhBMP-2 both follow the general Smad-signaling pathway, but the difference in intracellular phosphorylation intensity results in distinguishable transcription profiles on osteogenic marker genes and biological activities of each rhBMP-2. These findings provide an extensive understanding of the biological properties of E-rhBMP-2 and the signaling pathways during osteogenic differentiation.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3