Author:
Wang Mingyue,Wu Longfei,Guo Yongqing,Sun Jiajie,Deng Ming,Liu Guangbin,Li Yaokun,Sun Baoli
Abstract
AbstractHerbal tea residue (HTR) is generally considered to be a reusable resource which has still retains considerable proportion of nutrients and active substances. This study aimed to investigate the effects of substitution of whole corn silage with fermented herbal tea residue (FHTR) on meat quality, serum indices, rumen fermentation, and microbes in Chuanzhong black goats. Twenty-two female Chuanzhong black goats (4 months old) with similar weight (9.55 ± 0.95 kg) were selected and randomly divided into two groups. FHTR was used to replace 0% (CON group) and 30% (FHTR group) of whole corn silage in the diets and fed as a total mixed ration (TMR) for Chuanzhong black goats. The adaptation feeding period was 7 days, and the experimental period was 35 days. Results illustrated that the FHTR group had higher value of a* and concentrations of DM and CP and lower rate of water loss (P < 0.05) than the CON group. For the serum indices, goats fed with 30% FHTR had higher (P < 0.05) concentration of CR on day 35. For rumen fermentation, the pH and ratio of acetic acid/propionic acid (AA/PA) in the FHTR group were significantly lower than those in the CON group (P < 0.05). In addition, we studied the goats’s rumen microbial community composition and found that the dominant phyla were Firmicutes, Bacteroidetes,and Tenericutes; and the dominant genera were Quinella, Candidatus_Saccharimonas, and Saccharofermentans. There was a significant difference in the beta diversity of the rumen microbiota between groups (P < 0.05). To sum up, the addition of FHTR can affect the meat quality, serum indices, improved rumen fermentation by adjusted the diversity and function of the rumen microbiota.
Funder
Modern Agricultural Industrial Technology System of Guangdong Province
Key-Area Research and Development Program of Guangdong Province
Guangdong Basic and Applied Basic Research Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献