Abstract
AbstractAcetic acid bacteria (AAB) are obligate aerobic Gram-negative bacteria that are commonly used in vinegar fermentation because of their strong capacity for ethanol oxidation and acetic acid synthesis as well as their acid resistance. However, low biomass and low production rate due to acid stress are still major challenges that must be overcome in industrial processes. Although acid resistance in AAB is important to the production of high acidity vinegar, the acid resistance mechanisms of AAB have yet to be fully elucidated. In this study, we discuss the classification of AAB species and their metabolic processes and review potential acid resistance factors and acid resistance mechanisms in various strains. In addition, we analyze the quorum sensing systems of Komagataeibacter and Gluconacetobacter to provide new ideas for investigation of acid resistance mechanisms in AAB in the form of signaling pathways. The results presented herein will serve as an important reference for selective breeding of high acid resistance AAB and optimization of acetic acid fermentation processes.
Funder
National High Technology Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference141 articles.
1. Andrés-Barrao C, Saad MM, Chappuis M-L, Boffa M, Perret X, Ortega Pérez R, Barja F (2012) Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics 75(6):1701–1717. https://doi.org/10.1016/j.jprot.2011.11.027
2. Andrés-Barrao C, Saad MM, Cabello Ferrete E, Bravo D, Chappuis M-L, Ortega Pérez R, Junier P, Perret X, Barja F (2016) Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production. Food Microbiol 55:112–122. https://doi.org/10.1016/j.fm.2015.10.012
3. Asai T (1935) Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits. A new classification of the oxidative bacteria. J Agric Chem Soci Japan 11:674–708
4. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37(17):5768–5783. https://doi.org/10.1093/nar/gkp612
5. Baek JH, Kim KH, Moon JY, Yeo SH, Jeon CO (2020) Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar. Int J Syst Evol Microbiol 70(3):2026–2033. https://doi.org/10.1099/ijsem.0.004008
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献