Author:
Blancas José,Casas Alejandro,Pérez-Salicrup Diego,Caballero Javier,Vega Ernesto
Abstract
Abstract
Background
Management types and their intensity may vary according to indicators such as: (1) practices complexity, (2) degree of techniques specialization, (3) occurrence and types of social regulations, (4) artificial selection intensity, (5) energy invested, (6) tools types, and (7) amounts of resources obtained. Management types of edible plants were characterized and analyzed in Náhuatl communities of the Tehuacán Valley. We expected that both natural and human pressures generate risk on plant resources availability, influencing human responses of management directed to decrease risk. We particularly hypothesized that magnitude of risk would be a direct function of human pressures favored by cultural and economic value and ecological factors such as scarcity (restricted distribution and abundance). Management practices may decrease risk of plant resources, more effectively when they are more intense; however, absence or insufficiency of management practices on endangered plants may favor loss of their populations. Understanding current management motives and their consequences on the purpose of ensuring availability of plant resources might allow us to understand similar processes occurring in the past. This issue is particularly important to be studied in the Tehuacán Valley, where archaeologists documented possible scenarios motivating origins of plant management by agriculture during prehistory.
Methods
Through ethnobotanical collecting, 55 semi-structured and free listing interviews we inventoried edible plant species used in five villages of Coyomeapan, Mexico. We identified: (1) native plant species whose products are obtained exclusively through simple gathering, (2) native species involving simple gathering and other management types, and (3) non-native species managed by agricultural management. We conducted in depth studies on the 33 native species managed through gathering and other types of practices. We carried out a total of 660 sessions of detailed interviews to 20 households randomly selected. We showed to people voucher specimens and photos of the sample of species chosen and documented their cultural and economic values. Spatial availability of these plant species was evaluated through vegetation sampling. Values for each cultural, economic, and ecological indicator were codified and averaged or summed and weighed according to frequency of interviewees’ responses or ecological conditions per plant species. With the standardized values of these indicators we performed a PCA and scores of the first principal component were considered as a risk index, which summarizes information of thirteen indicators of human use, demand and scarcity of each plant species. Similarly, eleven indicators of energy invested, complexity, tools and management strategies were used for performing PCA and scores of the first principal component were considered as management intensity index for each plant species. A linear regression analysis was performed to analyze the relation between risk and management intensity indexes. Amounts of variation of management data explained by ecological, cultural and economic information, as well as their risk level were analyzed through canonical correspondence analyses (CCA).
Results
A total of 122 edible plant species were recorded, nearly 30% of them were introduced domesticated plants, 51 were wild species obtained exclusively by simple gathering and 33 were native species obtained by simple gathering and other management practices, these latter were the ones more deeply studied. People recognized variants in 21 of these latter 33 species, the variants receiving differential use, management, artificial selection and incipient domestication. The lowest values of management intensity corresponded to species under simple gathering and tolerance, mostly annual abundant plants, occasionally consumed by few people. The highest management intensity values were recorded in species with economic importance, mostly perennial with recognized variants whose management requires using tools, and which are protected by collective regulations. The regression analysis indicated significant value R2 = 0.433 (P < 0.001) between risk and management indexes. CCA explained 65.5% of variation of management intensity, mainly by socio-cultural factors (32.6%), whereas ecological data explained 21.3% and the intersection of all factors 11.6%. Variation of management intensity is 67.6% explained by risk variables. Length-span of life cycle, reproductive system type, distribution, number of parts used, number of management and use forms and type of regulations were statistically significant.
Conclusion
People manage plant resources according to the role these play in households’ subsistence, the quantity available and the quality of their useful products; particularly important is the balance between resources availability and demand. Management responses to risk are also influenced by the ease to propagate or manipulate individual plants and time requiring the construction of manipulation strategies and techniques.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,General Agricultural and Biological Sciences,Cultural Studies,Health (social science)