A validated analysis pipeline for mass spectrometry-based vitreous proteomics: new insights into proliferative diabetic retinopathy

Author:

Weber Sarah R.,Zhao Yuanjun,Ma Jingqun,Gates Christopher,da Veiga Leprevost Felipe,Basrur Venkatesha,Nesvizhskii Alexey I.,Gardner Thomas W.,Sundstrom Jeffrey M.ORCID

Abstract

Abstract Background Vitreous is an accessible, information-rich biofluid that has recently been studied as a source of retinal disease-related proteins and pathways. However, the number of samples required to confidently identify perturbed pathways remains unknown. In order to confidently identify these pathways, power analysis must be performed to determine the number of samples required, and sample preparation and analysis must be rigorously defined. Methods Control (n = 27) and proliferative diabetic retinopathy (n = 23) vitreous samples were treated as biologically distinct individuals or pooled together and aliquoted into technical replicates. Quantitative mass spectrometry with tandem mass tag labeling was used to identify proteins in individual or pooled control samples to determine technical and biological variability. To determine effect size and perform power analysis, control and proliferative diabetic retinopathy samples were analyzed across four 10-plexes. Pooled samples were used to normalize the data across plexes and generate a single data matrix for downstream analysis. Results The total number of unique proteins identified was 1152 in experiment 1, 989 of which were measured in all samples. In experiment 2, 1191 proteins were identified, 727 of which were measured across all samples in all plexes. Data are available via ProteomeXchange with identifier PXD025986. Spearman correlations of protein abundance estimations revealed minimal technical (0.99–1.00) and biological (0.94–0.98) variability. Each plex contained two unique pooled samples: one for normalizing across each 10-plex, and one to internally validate the normalization algorithm. Spearman correlation of the validation pool following normalization was 0.86–0.90. Principal component analysis revealed stratification of samples by disease and not by plex. Subsequent differential expression and pathway analyses demonstrated significant activation of metabolic pathways and inhibition of neuroprotective pathways in proliferative diabetic retinopathy samples relative to controls. Conclusions This study demonstrates a feasible, rigorous, and scalable method that can be applied to future proteomic studies of vitreous and identifies previously unrecognized metabolic pathways that advance understanding of diabetic retinopathy.

Funder

coulter translational research partnership

a. alfred taubman medical research institute

bennet and inez chotiner early career assistant professorship

research to prevent blindness

jdrf center of excellence

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3