Machine learning pipeline to analyze clinical and proteomics data: experiences on a prostate cancer case

Author:

Vizza Patrizia,Aracri Federica,Guzzi Pietro Hiram,Gaspari Marco,Veltri Pierangelo,Tradigo Giuseppe

Abstract

AbstractProteomic-based analysis is used to identify biomarkers in blood samples and tissues. Data produced by devices such as mass spectrometry requires platforms to identify and quantify proteins (or peptides). Clinical information can be related to mass spectrometry data to identify diseases at an early stage. Machine learning techniques can be used to support physicians and biologists in studying and classifying pathologies. We present the application of machine learning techniques to define a pipeline aimed at studying and classifying proteomics data enriched using clinical information. The pipeline allows users to relate established blood biomarkers with clinical parameters and proteomics data. The proposed pipeline entails three main phases: (i) feature selection, (ii) models training, and (iii) models ensembling. We report the experience of applying such a pipeline to prostate-related diseases. Models have been trained on several biological datasets. We report experimental results about two datasets that result from the integration of clinical and mass spectrometry-based data in the contexts of serum and urine analysis. The pipeline receives input data from blood analytes, tissue samples, proteomic analysis, and urine biomarkers. It then trains different models for feature selection, classification and voting. The presented pipeline has been applied on two datasets obtained in a 2 years research project which aimed to extract hidden information from mass spectrometry, serum, and urine samples from hundreds of patients. We report results on analyzing prostate datasets serum with 143 samples, including 79 PCa and 84 BPH patients, and an urine dataset with 121 samples, including 67 PCa and 54 BPH patients. As results pipeline allowed to identify interesting peptides in the two datasets, 6 for the first one and 2 for the second one. The best model for both serum (AUC=0.87, Accuracy=0.83, F1=0.81, Sensitivity=0.84, Specificity=0.81) and urine (AUC=0.88, Accuracy=0.83, F1=0.83, Sensitivity=0.85, Specificity=0.80) datasets showed good predictive performances. We made the pipeline code available on GitHub and we are confident that it will be successfully adopted in similar clinical setups.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3