Author:
Ali Mahmoud Alhaj,Kazzam Elsadig,Amir Naheed,Nyberg Fred,Adem Abdu
Abstract
Abstract
Background
The objective of this study was to provide for the first time data on plasma catecholamines, cortisol, glutathione and malondialdehyde after long term dehydration (20 days) in the presence and absence of angiotensin II (Ang II) AT1 receptor blocker (losartan) versus levels in time-matched, non-dehydrated control camels and to record the responses of glutathione and malondialdehyde activity in liver and kidney homogenates in control, dehydrated-losartan treated and dehydrated camels. Eighteen male camels were studied, six hydrated (control group), six dehydrated and treated with losartan (treated group) and six dehydrated not treated (dehydrated).
Results
Plasma levels of norepinephrine and dopamine were significantly increased (P < 0.01) in both treated and dehydrated groups compared to time matched control, whereas Plasma epinephrine level showed significant decrease (P < 0.05) in both treated and dehydrated groups compared to control. Plasma cortisol also showed significant increase (P < 0.01) in both treated and dehydrated groups compared to control. Glutathione levels in plasma, liver and kidney homogenates for both treated and dehydrated groups reveled significant increase (P < 0.05) Likewise, malondialdehyde levels in plasma, liver and kidney homogenates were substantially and significantly increased in both treated and dehydrated groups.
Conclusion
In conclusion, the results of this study demonstrated that dehydration substantially increased the circulating levels of norepinephrine, dopamine and cortisol but decreased plasma epinephrine. Similarly, losartan showed similar effects to that of dehydration. In addition, this investigation showed dehydration alone or in combination with losartan induced significant increments in glutathione and malondialdehyde activities in plasma, liver and kidney homogenates, presumably in order to counteract the potentially damaging effects of free radicals. Blockade of angiotensin II AT1 receptors did not alter significantly the response of dehydration in any of these indices.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference39 articles.
1. Gourad SS, Heesom K, Yao ST, Qiu J, Paton JF, Murphy D: Dehydration-induced proteome changes in the rat hypothalamo-neurohypohyseal system. Endocrinology. 2007, 148: 3041-3052. 10.1210/en.2007-0181.
2. Ali MA, Adem A, Chandranath IS, Benedict S, Pathan JY, et al: Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PloS ONE. 2012, 7 (5): e37299-10.1371/journal.pone.0037299. 10.1371/journal.pone.0037299
3. Reid IA: Interactions between ANG II, sympathetic nervous system and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992, 262: E763-E778.
4. Inagami T, Guo DF, Kitami Y: Molecular biology of angiotensin II receptors; an overview. J Hypertens. 1994, 12: S83-S94.
5. Timmermans PB, Wong PC, Chiu AT, et al: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993, 45: 205-251.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献