The effect of long-term dehydration and subsequent rehydration on markers of inflammation, oxidative stress and apoptosis in the camel kidney

Author:

Ali Mahmoud A.,Abu Damir Hassan,Ali Osman M.,Amir Naheed,Tariq Saeed,Greenwood Michael P.,Lin Panjiao,Gillard Benjamin,Murphy David,Adem AbduORCID

Abstract

Abstract Background Dehydration has deleterious effects in many species, but camels tolerate long periods of water deprivation without serious health compromise. The kidney plays crucial role in water conservation, however, some reports point to elevated kidney function tests in dehydrated camels. In this work, we investigated the effects of dehydration and rehydration on kidney cortex and medulla with respect to pro-inflammatory markers, oxidative stress and apoptosis along with corresponding gene expression. Results The cytokines IL-1β and IL-18 levels were significantly elevated in the kidney cortex of dehydrated camel, possibly expressed by tubular epithelium, podocytes and/or mesangial cells. Elevation of IL-18 persisted after rehydration. Dehydration induced oxidative stress in kidney cortex evident by significant increases in MDA and GSH, but significant decreases in SOD and CAT. In the medulla, CAT decreased significantly, but MDA, GSH and SOD levels were not affected. Rehydration abolished the oxidative stress. In parallel with the increased levels of MDA, we observed increased levels of PTGS1 mRNA, in MDA synthesis pathway. GCLC mRNA expression level, involved in GSH synthesis, was upregulated in kidney cortex by rehydration. However, both SOD1 and SOD3 mRNA levels dropped, in parallel with SOD activity, in the cortex by dehydration. There were significant increases in caspases 3 and 9, p53 and PARP1, indicating apoptosis was triggered by intrinsic pathway. Expression of BCL2l1 mRNA levels, encoding for BCL-xL, was down regulated by dehydration in cortex. CASP3 expression level increased significantly in medulla by dehydration and continued after rehydration whereas TP53 expression increased in cortex by rehydration. Changes in caspase 8 and TNF-α were negligible to instigate extrinsic apoptotic trail. Generally, apoptotic markers were extremely variable after rehydration indicating that animals did not fully recover within three days. Conclusions Dehydration causes oxidative stress in kidney cortex and apoptosis in cortex and medulla. Kidney cortex and medulla were not homogeneous in all parameters investigated indicating different response to dehydration/rehydration. Some changes in tested parameters directly correlate with alteration in steady-state mRNA levels.

Funder

College of Medicine and Health Sciences, United Arab Emirates University

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3