Dehydration-Induced Proteome Changes in the Rat Hypothalamo-Neurohypophyseal System

Author:

Gouraud S. S.1,Heesom K.2,Yao S. T.1,Qiu J.1,Paton J. F. R.3,Murphy D.1

Affiliation:

1. Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.S.G., S.T.Y., J.Q., D.M.), University of Bristol, Bristol, United Kingdom

2. Department of Biochemistry Proteomics Facility (K.H.), University of Bristol, Bristol, United Kingdom

3. Department of Physiology, Bristol Heart Institute (J.F.R.P.), University of Bristol, Bristol, United Kingdom

Abstract

The hypothalamo-neurohypophyseal system (HNS) mediates neuroendocrine responses to dehydration through the action of the antidiuretic hormone vasopressin (VP). VP is synthesized as part of a prepropeptide in magnocellular neurons of the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus. This precursor is processed during transport to axon terminals in the posterior pituitary gland, in which biologically active VP is stored until mobilized for secretion by electrical activity evoked by osmotic cues. During release, VP travels through the blood stream to specific receptor targets located in the kidney in which it increases the permeability of the collecting ducts to water, reducing the renal excretion of water, thus promoting water conservation. The HNS undergoes a dramatic function-related plasticity during dehydration. We hypothesize that alterations in steady-state protein levels might be partially responsible for this remodeling. We investigated dehydration-induced changes in the SON and pituitary neurointermediate lobe (NIL) proteomes using two-dimensional fluorescence difference gel electrophoresis. Seventy proteins were altered by dehydration, including 45 in the NIL and 25 in the SON. Using matrix-assisted laser desorption/ionization mass spectrometry, we identified six proteins in the NIL (four down, two up) and nine proteins in the SON (four up, five down) that are regulated as a consequence of chronic dehydration. Results for five of these proteins, namely Hsp1α (heat shock protein 1α), NAP22 (neuronal axonal membrane protein 22), GRP58 (58 kDa glucose regulated protein), calretinin, and ProSAAS (proprotein convertase subtilisin/kexin type 1 inhibitor), have been confirmed using independent methods such as semiquantitative Western blotting, two-dimensional Western blotting, enzyme-linked immunoassay, and immunohistochemistry. These proteins may have roles in regulating and effecting HNS remodeling.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3