Abstract
Abstract
In the current study interaction data of students in an online learning setting was used to research whether the academic performance of students at the end of term could be predicted in the earlier weeks. The study was carried out with 76 second-year university students registered in a Computer Hardware course. The study aimed to answer two principle questions: which algorithms and features best predict the end of term academic performance of students by comparing different classification algorithms and pre-processing techniques and whether or not academic performance can be predicted in the earlier weeks using these features and the selected algorithm. The results of the study indicated that the kNN algorithm accurately predicted unsuccessful students at the end of term with a rate of 89%. When findings were examined regarding the analysis of data obtained in weeks 3, 6, 9, 12, and 14 to predict whether the end-of-term academic performance of students could be predicted in the earlier weeks, it was observed that students who were unsuccessful at the end of term could be predicted with a rate of 74% in as short as 3 weeks’ time. The findings obtained from this study are important for the determination of features for early warning systems that can be developed for online learning systems and as indicators of student success. At the same time, it will aid researchers in the selection of algorithms and pre-processing techniques in the analysis of educational data.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Education
Reference28 articles.
1. Akçapınar, G., Çoşgun, E., & Altun, A. (2013, October 17th - 18th). Mining Wiki Usage Data for Predicting Final Grades of Students. Paper presented at the International Academic Conference on Education, Teaching and E-learning (IAC-ETeL 2013), Prague, Czech Republic.
2. Akçapınar, G., Hasnine, M. N., Majumdar, R., Flanagan, B., & Ogata, H. (2019). Developing an early-warning system for spotting at-risk students by using eBook interaction logs. Smart Learning Environments, 6(4), 1–15.
https://doi.org/10.1186/s40561-019-0083-4
.
3. Arnold, K. E. (2010). Signals: Applying academic analytics. Educause Quarterly, 33(1) Retrieved from
http://www.educause.edu/ero/article/signals-applying-academic-analytics
.
4. Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. Paper presented at the proceedings of the 2nd international conference on learning analytics and knowledge, Vancouver, British Columbia, Canada.
5. Baker, R. S. J. d. (2010). Data Mining. In International encyclopedia of education (Third Edition) (pp. 112–118). Oxford: Elsevier.
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献