AKADEMİK BAŞARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ

Author:

Yağcı Mustafa1ORCID

Affiliation:

1. KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ

Abstract

Bu çalışmada, öğrencilerin bir önceki döneme ait dönem sonu not ortalamalarını veri madenciliği yöntemleri ile analiz ederek sonraki dönemlerde alabileceği dönem sonu not ortalamalarını giderek genişleyen 3 kategoride (Bölüm, Fakülte, Üniversite bazında) tahmin edecek yeni bir model önerilmiştir. Veri seti, Türkiye’de bir Devlet Üniversitesindeki tüm öğrenci kayıtlarının tutulduğu Öğrenci Bilgi Sisteminden (ÖBS) alınmıştır. Veriler, Sınıf öğretmenliği bölümünden 426, Eğitim fakültesinden 2.379 ve Üniversite genelinde eğitim gören 5.149 öğrencinin 2017-2018 Güz ve Bahar Yarıyılı dönem sonu not ortalamalarını içermektedir. Öğrencilerin dönem sonundaki genel not ortalamalarını tahmin etmek için veri madenciliği algoritmalarından rastgele orman, lineer regresyon, destek vektör makineleri ve k-en yakın komşular algoritmalarının başarımı hesaplanmış ve karşılaştırılmıştır. Uygulanan tüm algoritmalar örnekleri %92 ile %94 arasında değişen oranlarda doğru bir şekilde sınıflandırmıştır. Önerilen model, öğrencilerin dönem sonu not ortalamalarını tek bir değişken ile 4 üzerinden 0,28 puanlık ortalama sapma ile doğru tahmin etmiştir. Dönem sonu not ortalamalarının tahmin edilmesi sayesinde başarısız olma riski yüksek olan öğrenciler önceden belirlenebilir.

Publisher

Muhendislik Bilimleri ve Tasarim Dergisi

Reference47 articles.

1. Ahmad, Z., & Shahzadi, E. (2018). Prediction of students’ academic performance using artificial neural network. Bulletin of Education and Research, 40(3), 157–164.

2. Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16. https://doi.org/10.1186/s41239-019-0172-z

3. Aydemir, B. (2017). Veri madenciliği yöntemleri kullanarak meslek yüksekokulu öğrencilerinin akademik başarı tahmini [Predicting academic success of vocational high school students using data mining methods] [Master’s Thesis]. Pamukkale University, Denizli, Turkey. http://hdl.handle.net/11499/2464

4. Baker, R. S. J. d., & Yacef, K. (2009). The state of educational data mining in 2009 : A review and future visions. Journal of Educational Data Mining, 1(1), 3-16. https://doi.org/10.5281/zenodo.3554657

5. Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158. https://doi.org/10.1016/j.compedu.2020.103999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3