Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice

Author:

Coméra ChristineORCID,Cartier Christel,Gaultier Eric,Catrice Olivier,Panouille Quentin,El Hamdi Sarah,Tirez Kristof,Nelissen Inge,Théodorou Vassilia,Houdeau Eric

Abstract

Abstract Background Food-grade TiO2 (E171 in the EU) is widely used as a coloring agent in foodstuffs, including sweets. Chronic dietary exposure raises concerns for human health due to proinflammatory properties and the ability to induce and promote preneoplastic lesions in the rodent gut. Characterization of intestinal TiO2 uptake is essential for assessing the health risk in humans. We studied in vivo the gut absorption kinetics of TiO2 in fasted mice orally given a single dose (40 mg/kg) to assess the ability of intestinal apical surfaces to absorb particles when available without entrapment in the bolus. The epithelial translocation pathways were also identified ex vivo using intestinal loops in anesthetized mice. Results The absorption of TiO2 particles was analyzed in gut tissues by laser-reflective confocal microscopy and ICP-MS at 4 and 8 h following oral administration. A bimodal pattern was detected in the small intestine: TiO2 absorption peaked at 4 h in jejunal and ileal villi before returning to basal levels at 8 h, while being undetectable at 4 h but significantly present at 8 h in the jejunal Peyer’s patches (PP). Lower absorption occurred in the colon, while TiO2 particles were clearly detectable by confocal microscopy in the blood at 4 and 8 h after treatment. Ex vivo, jejunal loops were exposed to the food additive in the presence and absence of pharmacological inhibitors of paracellular tight junction (TJ) permeability or of transcellular (endocytic) passage. Thirty minutes after E171 addition, TiO2 absorption by the jejunal villi was decreased by 66% (p < 0.001 vs. control) in the presence of the paracellular permeability blocker triaminopyrimidine; the other inhibitors had no significant effect. Substantial absorption through a goblet cell (GC)-associated pathway, insensitive to TJ blockade, was also detected. Conclusions After a single E171 dose in mice, early intestinal uptake of TiO2 particles mainly occurred through the villi of the small intestine, which, in contrast to the PP, represent the main absorption surface in the small intestine. A GC-associated passage and passive diffusion through paracellular TJ spaces between enterocytes appeared to be major absorption routes for transepithelial uptake of dietary TiO2.

Funder

Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail

INRA

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3