Author:
Bernasconi Michele,Berger Christoph,Sigrist Jürg A,Bonanomi Athos,Sobek Jens,Niggli Felix K,Nadal David
Abstract
Abstract
Background
The Epstein-Barr virus (EBV) is associated with lymphoid malignancies, including Burkitt's lymphoma (BL), and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines.
Results
To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2), and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2), and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions.
Conclusion
Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference35 articles.
1. Cohen JI: Epstein-Barr virus infection. N Engl J Med 2000,343(7):481-492. 10.1056/NEJM200008173430707
2. Sugimoto M, Tahara H, Ide T, Furuichi Y: Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res 2004,64(10):3361-3364. 10.1158/0008-5472.CAN-04-0079
3. Ambinder RF, Robertson KD, Moore SM, Yang J: Epstein-Barr virus as a therapeutic target in Hodgkin's disease and nasopharyngeal carcinoma. Semin Cancer Biol 1996,7(4):217-226. 10.1006/scbi.1996.0029
4. Kieff E, Rickinson AB: Epstein-Barr virus and its replication. In Fields Virology. Volume 2. Fourth edition. Edited by: Knipe DM, Howley PM. Philadelphia, PA , Lippincott Williams & Wilkins Publishers; 2001:2511-2573.
5. Kelly G, Bell A, Rickinson A: Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 2002,8(10):1098-1104. 10.1038/nm758