Bayesian Estimation of Allele-Specific Expression in the Presence of Phasing Uncertainty

Author:

Zou XueORCID,Gomez Zachary W.ORCID,Reddy Timothy E.ORCID,Allen Andrew S.,Majoros William H.ORCID

Abstract

AbstractMotivationAllele-specific expression (ASE) analyses aim to detect imbalanced expression of maternal versus paternal copies of an autosomal gene. Such allelic imbalance can result from a variety of cis-acting causes, including disruptive mutations within one copy of a gene that impact the stability of transcripts, as well as regulatory variants outside the gene that impact transcription initiation. Current methods for ASE estimation suffer from a number of shortcomings, such as relying on only one variant within a gene, assuming perfect phasing information across multiple variants within a gene, or failing to account for alignment biases and possible genotyping errors.ResultsWe developed BEASTIE, a Bayesian hierarchical model designed for precise ASE quantification at the gene level, based on given genotypes and RNA-Seq data. BEASTIE addresses the complexities of allelic mapping bias, genotyping error, and phasing errors by incorporating empirical phasing error rates derived from Genome-in-a-Bottle individual NA12878. BEASTIE surpasses existing methods in accuracy, especially in scenarios with high phasing errors. This improvement is critical for identifying rare genetic variants often obscured by such errors. Through rigorous validation on simulated data and application to real data from the 1000 Genomes Project, we establish the robustness of BEASTIE. These findings underscore the value of BEASTIE in revealing patterns of ASE across gene sets and pathways.Availability and ImplementationThe software is freely available fromhttps://github.com/x811zou/BEASTIE. BEASTIE is available as Python source code and as a Docker image.Supplementary informationAdditional information is available online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3