A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity

Author:

Elliott Kiona,Berry Jeffrey C.,Kim Hobin,Bart Rebecca S.ORCID

Abstract

Abstract Background Methods to accurately quantify disease severity are fundamental to plant pathogen interaction studies. Commonly used methods include visual scoring of disease symptoms, tracking pathogen growth in planta over time, and various assays that detect plant defense responses. Several image-based methods for phenotyping of plant disease symptoms have also been developed. Each of these methods has different advantages and limitations which should be carefully considered when choosing an approach and interpreting the results. Results In this paper, we developed two image analysis methods and tested their ability to quantify different aspects of disease lesions in the cassava-Xanthomonas pathosystem. The first method uses ImageJ, an open-source platform widely used in the biological sciences. The second method is a few-shot support vector machine learning tool that uses a classifier file trained with five representative infected leaf images for lesion recognition. Cassava leaves were syringe infiltrated with wildtype Xanthomonas, a Xanthomonas mutant with decreased virulence, and mock treatments. Digital images of infected leaves were captured overtime using a Raspberry Pi camera. The image analysis methods were analyzed and compared for the ability to segment the lesion from the background and accurately capture and measure differences between the treatment types. Conclusions Both image analysis methods presented in this paper allow for accurate segmentation of disease lesions from the non-infected plant. Specifically, at 4-, 6-, and 9-days post inoculation (DPI), both methods provided quantitative differences in disease symptoms between different treatment types. Thus, either method could be applied to extract information about disease severity. Strengths and weaknesses of each approach are discussed.

Funder

National Science Foundation

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3