Deep Learning-Based Barley Disease Quantification for Sustainable Crop Production

Author:

Bouhouch Yassine12ORCID,Esmaeel Qassim1,Richet Nicolas1ORCID,Barka Essaïd Aït1ORCID,Backes Aurélie1,Steffenel Luiz Angelo3,Hafidi Majida2,Jacquard Cédric1,Sanchez Lisa1ORCID

Affiliation:

1. Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes (RIBP), EA 4707 USC INRAE 1488, Reims, France

2. Faculté des sciences, Université Moulay Ismail, Laboratoire de biotechnologie végétale et de biologie moléculaire, B.P. 11201, Zitoune, Meknès, Maroc

3. Université de Reims Champagne-Ardenne, LICIIS-Laboratoire d'Informatique en Calcul Intensif et Image pour la Simulation/LRC DIGIT URCA-CEA, Reims, France

Abstract

Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley ( Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep learning model to quantify net blotch disease symptoms on different days postinfection on seedling leaves using Cascade R-CNN (region-based convolutional neural network) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for Cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4 days postinfection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.

Funder

Grand-Est Region

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3