SeptoSympto: a precise image analysis of Septoria tritici blotch disease symptoms using deep learning methods on scanned images

Author:

Mathieu LauraORCID,Reder Maxime,Siah AliORCID,Ducasse Aurélie,Langlands-Perry CamillaORCID,Marcel Thierry C.ORCID,Morel Jean-BenoîtORCID,Saintenac CyrilleORCID,Ballini ElsaORCID

Abstract

Abstract Background Investigations on plant-pathogen interactions require quantitative, accurate, and rapid phenotyping of crop diseases. However, visual assessment of disease symptoms is preferred over available numerical tools due to transferability challenges. These assessments are laborious, time-consuming, require expertise, and are rater dependent. More recently, deep learning has produced interesting results for evaluating plant diseases. Nevertheless, it has yet to be used to quantify the severity of Septoria tritici blotch (STB) caused by Zymoseptoria tritici—a frequently occurring and damaging disease on wheat crops. Results We developed an image analysis script in Python, called SeptoSympto. This script uses deep learning models based on the U-Net and YOLO architectures to quantify necrosis and pycnidia on detached, flattened and scanned leaves of wheat seedlings. Datasets of different sizes (containing 50, 100, 200, and 300 leaves) were annotated to train Convolutional Neural Networks models. Five different datasets were tested to develop a robust tool for the accurate analysis of STB symptoms and facilitate its transferability. The results show that (i) the amount of annotated data does not influence the performances of models, (ii) the outputs of SeptoSympto are highly correlated with those of the experts, with a similar magnitude to the correlations between experts, and (iii) the accuracy of SeptoSympto allows precise and rapid quantification of necrosis and pycnidia on both durum and bread wheat leaves inoculated with different strains of the pathogen, scanned with different scanners and grown under different conditions. Conclusions SeptoSympto takes the same amount of time as a visual assessment to evaluate STB symptoms. However, unlike visual assessments, it allows for data to be stored and evaluated by experts and non-experts in a more accurate and unbiased manner. The methods used in SeptoSympto make it a transferable, highly accurate, computationally inexpensive, easy-to-use, and adaptable tool. This study demonstrates the potential of using deep learning to assess complex plant disease symptoms such as STB.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3