Real-time monitoring of rhizosphere nitrate fluctuations under crops following defoliation

Author:

Capstaff Nicola M.ORCID,Domoney ClaireORCID,Miller Anthony J.ORCID

Abstract

Abstract Background Management regime can hugely influence the efficiency of crop production but measuring real-time below-ground responses is difficult. The combination of fertiliser application and mowing or grazing may have a major impact on roots and on the soil nutrient profile and leaching. Results A novel approach was developed using low-cost ion-selective sensors to track nitrate (NO3) movement through soil column profiles sown with the forage crops, Lolium perenne and Medicago sativa. Applications of fertiliser, defoliation of crops and intercropping of the grass and the legume were tested. Sensor measurements were compared with conventional testing of lysimeter and leachate samples. There was little leaching of NO3 through soil profiles with current management practices, as monitored by both methods. After defoliation, the measurements detected a striking increase in soil NO3 in the middle of the column where the greatest density of roots was found. This phenomenon was not detected when no NO3 was applied, and when there was no defoliation, or during intercropping with Medicago. Conclusion Mowing or grazing may increase rhizodeposition of carbon that stimulates soil mineralization to release NO3 that is acquired by roots without leaching from the profile. The soil columns and sensors provided a dynamic insight into rhizosphere responses to changes in above-ground management practices.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3