Plant-soil feedback: incorporating untested influential drivers and reconciling terminology

Author:

De Long Jonathan R.ORCID,Heinen Robin,Heinze Johannes,Morriën Elly,Png G. Kenny,Sapsford Sarah J.,Teste François P.,Fry Ellen L.

Abstract

Abstract Background Plants condition the soil in which they grow, thereby altering the performance of subsequent plants growing in this soil. This phenomenon, known as plant-soil feedback (PSF), has garnered increasing interest. Experiments are moving from single species soil pairings in the glasshouse to community-level field trials. Consequently, our knowledge of the role PSF plays in shaping ecosystem functions has advanced. However, knowledge gaps remain. Scope Here, we explore intrinsic and extrinsic abiotic and biotic drivers of PSF such as maternal effects, plant functional traits, self-DNA, plant-plant competition, herbivory, interactions between soil organisms, temperature, drought, flooding, greenhouse gases, (micro)nutrients, plant-litter-soil feedback and priority effects. These drivers have begun to feature in experiments, thereby increasing our mechanistic understanding of PSF. Nonetheless, many of these topics have received insufficient coverage to determine general principles across larger temporal and spatial scales. Further, conflicting terminology has excluded PSF studies from reviews and meta-analyses. We review terms such as soil sickness, Janzen-Connell hypothesis, soil-related invasive species work, soil legacies, allelopathy and soil-related succession that overlap with PSF but are generally not named as such. Conclusion Holistic experimental designs that consider the continual reciprocal feedback between the extrinsic environment, plants and soil, as well as the unification of terminologies are necessary if we are to realise the full potential of PSF for understanding and steering ecosystem processes. Here, we compile outstanding questions related to PSF research that emphasis the aforementioned topics and suggest ways to incorporate them into future research in order to advance plant-soil ecology.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3