Affiliation:
1. Department of Earth and Environmental Sciences The University of Manchester Manchester UK
2. Department of Community Ecology Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
Abstract
Abstract
Root functional traits are known to influence soil properties that underpin ecosystem functioning. Yet few studies have explored how root traits simultaneously influence physical, chemical, and biological properties of soil, or how these responses are modified by common grassland perturbations that shape roots, such as defoliation and fertilisation.
Here, we explored how root traits of a wide range of grassland plant species with contrasting resource acquisition strategies (i.e. conservative vs. exploitative strategy plant species) respond to defoliation and fertilisation individually and in combination, and examined cascading impacts on a range of soil abiotic and biotic properties that underpin ecosystem functioning.
We found that the amplitude of the response of root traits to defoliation and fertilisation varied among plant species, in most cases independently of plant resource acquisition strategies. However, the direction of the root trait responses (increase or decrease) to perturbations was consistent across all plant species, with defoliation and fertilisation exerting opposing effects on root traits. Specific root length increased relative to non‐perturbed control in response to defoliation, while root biomass, root mass density, and root length density decreased. Fertilisation induced the opposite responses. We also found that both defoliation and fertilisation individually enhanced the role of root traits in regulating soil biotic and abiotic properties, especially soil aggregate stability.
Synthesis: Our results indicate that defoliation and fertilisation, two common grassland perturbations, have contrasting impacts on root traits of grassland plant species, with direct and indirect short‐term consequences for a wide range of soil abiotic and biotic properties that underpin ecosystem functioning.
Funder
University of Manchester
Biotechnology and Biological Sciences Research Council
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献