Effect of Aminating Lignin Loading with Arbuscular Mycorrhizal Fungi on Soil Aggregate Structure Improvement

Author:

Hu Chenghui1,Xu Tingting1ORCID,Wang Shumei1,Bian Huiyang1ORCID,Dai Hongqi1ORCID

Affiliation:

1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

Lignin is an important component of plant fiber raw materials, and is a three-dimensional network structure aromatic polymer with abundant resources and a complex structure in nature. Lignin is generally used as industrial waste, and its potential value has not been fully utilized. Modern agriculture extensively uses chemical fertilizers, leading to the gradual degradation of soil fertility and structure, which seriously affects crop growth, nutrient transport, and root respiration function. Based on soil bulk density, porosity, aggregates, and their stability indicators, this study analyzed the effects of aminated industrial lignin and its loading with arbuscular mycorrhizal fungi on soil structure improvement and plant growth. It was hoped that resource-rich lignin could play a beneficial role in improving soil structure and promoting crop growth. The phenolic hydroxyl group of lignin was epoxidized and further aminated to load with arbuscular mycorrhizal fungi. The results indicated that amine-modified lignin could effectively load with arbuscular mycorrhizal fungi. The application of arbuscular mycorrhizal fungi-supported aminated lignin to soil aggregate structure improvement greatly reduced the bulk density of soil, and increased the porosity of soil and the content of large granular soil. Compared with unmodified soil, soil bulk density decreased by 73.08%, the porosity of soil increased by 70.43%, and the content of large granular soil increased by 56.38%. Using the improved soil for corn cultivation efficiently increased the biomass of corn. The plant height was increased by 72.16%, the root–shoot ratio was increased by 156.25%, and other indexes were also improved to varying degrees. The experimental method provides an important basis for the effective utilization of lignin materials in agriculture in the future.

Funder

National Key Research and Development Project of the 13th Five-Year Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3