Abstract
Abstract
Background
In Arabidopsis, RNA Polymerase II (Pol II) often pauses within a few hundred base pairs downstream of the polyadenylation site, reflecting efficient transcriptional termination, but how such pausing is regulated remains largely elusive.
Result
Here, we analyze Pol II dynamics at 3’ ends by combining comprehensive experiments with mathematical modelling. We generate high-resolution serine 2 phosphorylated (Ser2P) Pol II positioning data specifically enriched at 3’ ends and define a 3’ end pause index (3’PI). The position but not the extent of the 3’ end pause correlates with the termination window size. The 3’PI is not decreased but even mildly increased in the termination deficient mutant xrn3, indicating 3’ end pause is a regulatory step early during the termination and before XRN3-mediated RNA decay that releases Pol II. Unexpectedly, 3’PI is closely associated with gene exon numbers and co-transcriptional splicing efficiency. Multiple exons genes often display stronger 3’ end pauses and more efficient on-chromatin splicing than genes with fewer exons. Chemical inhibition of splicing strongly reduces the 3’PI and disrupts its correlation with exon numbers but does not globally impact 3’ end readthrough levels. These results are further confirmed by fitting Pol II positioning data with a mathematical model, which enables the estimation of parameters that define Pol II dynamics.
Conclusion
Our work highlights that the number of exons via co-transcriptional splicing is a major determinant of Pol II pausing levels at the 3’ end of genes in plants.
Funder
National Natural Science Foundation of China
Guangdong Innovation Research Team fund
Shenzhen Innovation Committee of Science and Technology
Key laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献