Abstract
Abstract
Background
We aimed to examine the ethical concerns Singaporeans have about sharing health-data for precision medicine (PM) and identify suggestions for governance strategies. Just as Asian genomes are under-represented in PM, the views of Asian populations about the risks and benefits of data sharing are under-represented in prior attitudinal research.
Methods
We conducted seven focus groups with 62 participants in Singapore from May to July 2019. They were conducted in three languages (English, Mandarin and Malay) and analysed with qualitative content and thematic analysis.
Results
Four key themes emerged: nuanced understandings of data security and data sensitivity; trade-offs between data protection and research benefits; trust (and distrust) in the public and private sectors; and governance and control options. Participants were aware of the inherent risks associated with data sharing for research. Participants expressed conditional support for data sharing, including genomic sequence data and information contained within electronic medical records. This support included sharing data with researchers from universities and healthcare institutions, both in Singapore and overseas. Support was conditional on the perceived social value of the research and appropriate de-identification and data security processes. Participants suggested that a data sharing oversight body would help strengthen public trust and comfort in data research for PM in Singapore.
Conclusion
Maintenance of public trust in data security systems and governance regimes can enhance participation in PM and data sharing for research. Contrary to themes in much prior research, participants demonstrated a sophisticated understanding of the inherent risks of data sharing, analysed trade-offs between risks and potential benefits of PM, and often adopted an international perspective.
Funder
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Subject
Health Policy,Health(social science),Issues, ethics and legal aspects
Reference68 articles.
1. Schaefer GO, Tai E, Sun S. Precision medicine and big data. ABR. 2019;11:275. https://doi.org/10.1007/s41649-019-00094-2.
2. Marquart J, Chen EY, Prasad V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 2018;4(8):1093–8. https://doi.org/10.1001/jamaoncol.2018.1660.
3. Chowkwanyun M1, Bayer R1, Galea S1."Precision" Public Health - Between Novelty and Hype. N Engl J Med. 2018 Oct 11;379(15):1398–1400. doi: https://doi.org/10.1056/NEJMp1806634. Epub 2018 Sep 5; Aron DC. Precision medicine in an imprecise and complex world: Magic bullets, hype, and the fuzzy line between health and disease. J Eval Clin Pract. 2019 Dec 21. doi: https://doi.org/10.1111/jep.13306.
4. National Institute of Health. What is the Precision Medicine Initiative? 2020. https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative Accessed 31 March 2020.
5. Sanders S, Oberst J (Eds): Precision Medicine in China. In American Association for the Advancement of Science, Washington DC: Science/AAAS Custom Publishing Office; 2016, p. 41. https://www.sciencemag.org/sites/default/files/custom-publishing/documents/Bioyong-Precision-Medicine-supplement_Final.pdf
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献