Urinary metabolites predict mortality or need for renal replacement therapy after combat injury

Author:

Gisewhite SarahORCID,Stewart Ian J.,Beilman Greg,Lusczek Elizabeth

Abstract

Abstract Background Traditionally, patient risk scoring is done by evaluating vital signs and clinical severity scores with clinical intuition. Urinary biomarkers can add objectivity to these models to make risk prediction more accurate. We used metabolomics to identify prognostic urinary biomarkers of mortality or need for renal replacement therapy (RRT). Additionally, we assessed acute kidney injury (AKI) diagnosis, injury severity score (ISS), and AKI stage. Methods Urine samples (n = 82) from a previous study of combat casualties were evaluated using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Chenomx software was used to identify and quantify urinary metabolites. Metabolite concentrations were normalized by urine output, autoscaled, and log-transformed. Partial least squares discriminant analysis (PLS-DA) and statistical analysis were performed. Receiver operating characteristic (ROC) curves were used to assess prognostic utility of biomarkers for mortality and RRT. Results Eighty-four (84) metabolites were identified and quantified in each urine sample. Of these, 11 were identified as drugs or drug metabolites and excluded. The PLS-DA models for ISS and AKI diagnosis did not have acceptable model statistics. Therefore, only mortality/RRT and AKI stage were analyzed further. Of 73 analyzed metabolites, 9 were significantly associated with mortality/RRT (p < 0.05) and 11 were significantly associated with AKI stage (p < 0.05). 1-Methylnicotinamide was the only metabolite to be significantly associated (p < 0.05) with all outcomes and was significantly higher (p < 0.05) in patients with adverse outcomes. Elevated lactate and 1-methylnicotinamide levels were associated with higher AKI stage and mortality and RRT, whereas elevated glycine levels were associated with patients who survived and did not require RRT, or had less severe AKI. ROC curves for each of these metabolites and the combined panel had good predictive value (lactate AUC = 0.901, 1-methylnicotinamide AUC = 0.864, glycine AUC = 0.735, panel AUC = 0.858). Conclusions We identified urinary metabolites associated with AKI stage and the primary outcome of mortality or need for RRT. Lactate, 1-methylnicotinamide, and glycine may be used as a panel of predictive biomarkers for mortality and RRT. 1-Methylnicotinamide is a novel biomarker associated with adverse outcomes. Additional studies are necessary to determine how these metabolites can be utilized in clinically-relevant risk prediction models.

Funder

U.S. Air Force

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3