Metabolite accumulation from oral NMN supplementation drives aging-specific kidney inflammation

Author:

Saleh Tara A.ORCID,Whitson JeremyORCID,Keiser Phoebe,Prasad PraveenaORCID,Jenkins Brenita C.,Sodeinde Tori,Mann Carolyn N.,Rabinovitch Peter S.ORCID,McReynolds Melanie R.ORCID,Sweetwyne Mariya T.ORCID

Abstract

AbstractThe mitochondrial-rich renal tubule cells are key regulators of blood homeostasis via excretion and reabsorption of metabolic waste. With age, tubules are subject to increasing mitochondrial dysfunction and declining nicotinamide adenine dinucleotide (NAD+) levels, both hampering ATP production efficiency. We tested two mitochondrial interventions in young (6-mo) and aged (26-mo) adult male mice: (ELAM), a tetrapeptide in clinical trials that improves mitochondrial structure and function, and nicotinamide mononucleotide (NMN), an NAD+intermediate and commercially available oral supplement. Kidneys were analyzed from young and aged mice after eight weeks of treatment with ELAM (3 mg/kg/day), NMN (300 mg/kg/day), or from aged mice treated with the two interventions combined (ELAM+NMN). We hypothesized that combining pharmacologic treatments to ameliorate mitochondrial dysfunction and boost NAD+levels, would more effectively reduce kidney aging than either intervention alone. Unexpectedly, in aged kidneys, NMN increased expression of genetic markers of inflammation (IL-1β and Ccl2) and tubule injury (Kim-1). Metabolomics of endpoint sera showed that NMN-treated aged mice had higher circulating levels of uremic toxins than either aged controls or young NMN-treated mice. ELAM+NMN- treated aged mice accumulated uremic toxins like NMN-only aged mice, but reduced IL-1β and Ccl2 kidney mRNA. This suggests that pre-existing mitochondrial dysfunction in aged kidney underlies susceptibility to inflammatory signaling with NMN supplementation in aged, but not young, mice. These findings demonstrate age and tissue dependent effects on downstream metabolic accumulation from NMN and highlight the need for targeted analysis of aged kidneys to assess the safety of anti-aging supplements in older populations.Summary StatementDeclining levels of NAD+and increasing mitochondrial dysfunction with age are functionally linked and are popular mechanistic targets of commercially available anti-aging therapeutics. Studies have focused on nicotinamide mononucleotide (NMN), nicotinamide riboside (NR) and nicotinamide (NAM) supplementation to boost cellular NAD+, but a consensus on the dosage and regimen that is beneficial or tolerable has not been reached. We show that although high levels of sustained NMN supplementation are beneficial to liver and heart in aged mice, the same dosing regimen carries age-associated signs of kidney inflammation. Our findings underscore a complex state of age- and tissue-specific metabolic homeostasis and raise questions not only about how much, and for how long, but at what age is NAD+boosting safe.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3